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Abstract

New synthesis techniques for the design of fault accommodating controllers for flexible

systems are developed. Three robust control design strategies, static dissipative, dynamic

dissipative and�-synthesis, are used in the approach. The approach provides techniques for

designing controllers that maximize, in some sense, the tolerance of the closed-loop system

against faults in actuators and sensors, while guaranteeing performance robustness at a specified

performance level, measured in terms of the proximity of the closed-loop poles to the imaginary

axis (the degree of stability). For dissipative control designs, nonlinear programming is employed

to synthesize the controllers, whereas in�-synthesis, the traditional D-K iteration is used. To

demonstrate the feasibility of the proposed techniques, they are applied to the control design of

a structural model of a flexible laboratory test structure.

Introduction

Control System design for flexible systems is challenging because of their special dynamic

characteristics: a large number of structural modes within the controller bandwidth; low, closely

spaced modal frequencies; very small inherent damping; and insufficient knowledge of the

parameters. For a control design to be considered feasible, it must 1) be of reasonably low

order, 2) satisfy the nominal performance specifications, and 3) be robust to errors in the design

model. A feasible control design must be robust to parametric and nonparametric uncertainties in
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the system model. In this study we focus on the errors or failures in the control system hardware,

such as sensors and/or actuators. It is desirable to design a controller that can accommodate, to

a specified degree, the failure and/or degradation of the control system hardware.

Generally, instrument failures can be divided into two categories: hard failure, which in-

dicates the total loss of the instrument, and soft failure, which indicates a partial loss of the

instrument, resulting in input-output performance degradation. Hard failures have been tradi-

tionally dealt with through the introduction of redundancies, along with reliable fault detection

systems. Soft failures have been traditionally accommodated through control designs that guar-

antee sufficient stability margins. In single-input/single-output systems, the stability margins are

imposed through gain and phase margins. For multi-input/multi-output systems, stability margins

can be attained through robust control theory. This paper investigates the use of robust control

theory in developing a methodology for designing fault-accommodating controllers. Three ro-

bust control design techniques, namely, static dissipative, dynamics dissipative, and structured

singular-value-based design, are considered. The paper considers soft instrument failure in the

form of the degradation of the sensitivity and output of the instrument(s), e.g., actuator force

output has decreased for a given input voltage command.

Synthesis techniques are presented for each of the three control strategies to design controllers

that provide a specified degree of stability while accommodating soft input-output failures.

The term degree of stability refers to the distance from the pole of the closed-loop system

closest to the imaginary axis, which can be viewed as a performance measure for the system.

The approach taken reduces the robust performance problem to a robust stabilization problem.

Simple conditions for robust stabilization are established for both static and dynamic dissipative

controllers. For dissipative control designs, nonlinear programming is employed to synthesize

the controllers, whereas in�-synthesis, the traditional D-K iteration method is used. To
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demonstrate the feasibility of the proposed techniques, they are applied to the control design

of a structural model of NASA’s Phase-II Controls-Structures Interaction (CSI) Evolutionary

Model test structure.

In the following sections, the presented fault accommodation theories have been formulated

for the case of actuator failures. Sensor failures can be treated using similar approaches.

Plant Description

A typical model of a linear, time-invariant flexible system may be represented by the

following second order dynamical equations:

M �x+D _x +Kx = Bu (1)

together with some set of measurement and performance output equations:

yp = Cmpx; yr = Cmr _x

zp = Cppx; zr = Cpr _x

(2)

where: M is the positive definite mass matrix;D is the positive semidefinite damping matrix;

K is the positive semidefinite stiffness matrix;B is the input influence matrix;Cmp andCmr are

the position/displacement and rate/velocity measurement output influence matrices, respectively;

Cpp andCpr are position and rate performance output influence matrices, respectively;x is a

k � 1 vector of displacements;u is am � 1 vector of inputs to the system;yp and yr are the

position and rate measurement output vectors, respectively; andzp andzr are the position and rate

performance output vectors, respectively. Usually, a finite element analysis is used to obtain these

matrices. In most cases, the number of degrees of freedom,k, is quite large and thus impractical

to work with for general design and analysis purposes. To make the problem more tractable, the

displacements vectorx is transformed into modal coordinates using the transformationx = �r,

with r being an � 1 vector of modal amplitudes andnn k. The transformation matrix�
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containsn columns, which are the eigenvectors associated with then modes of interest of the

flexible system. The equations for the system, in transformed coordinates, are

Mr�r +Dr _r +Krr = �TBu

yp = Cmp�r; yr = Cmr� _r

zp = Cpp�r; zr = Cpr� _r

(3)

If normal modes are used, and their mode shapes have been normalized with respect to the

mass matrix, and modal damping is assumed, thenMr = Inxn, Kr = diag
�
!2

1
; !2

2
; :::; !2

n

�
, and

Dr = diag(2�1!1; 2�2!2; :::; 2�n!n), with wi and �i being the open-loop natural frequency and

damping ratio values, respectively, for the ith mode.

By defining a new vectorxs = [rT _rT ]T , the second order equations in Eq. (3) can be

rewritten into first order form as:

_xs = Asxs +Bsu

As =

�
0 Inxn

�Kr �Dr

�
; Bs =

�
0

�TB

�
(4)

The measurement and performance output equations can then be written as:

y =

�
yp
yr

�
= Cxs

z =

�
zp
zr

�
= Czxs

C =

�
Cmp� 0

0 Cmr�

�
; Cz =

�
Cpp� 0
0 Cpr�

�
(5)

Here,xs is the plant state vector;As is the plant state matrix;Bs is the control input influence

matrix; andC andCz denote the measurement output and performance output influence matrices,

respectively. A thorough description of these matrices with normal modes is given in Ref. 1.

Problem Formulation

In this section, the development of the three control design strategies, static dissipative,

dynamic dissipative, and� synthesis, will be discussed.
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Static Dissipative Controller

Dissipative controllers that utilize collocated and compatible actuators and sensors offer an

attractive strategy for active control of flexible systems. For example, this means actuators

such as torquers are used with attitude and attitude rate sensors and thrusters are used with

linear position and linear velocity sensors. Note that complete sensor-actuator collocation and

compatibility implies that in Eq. (3)Cmp = Cmr = BT . Dissipative controllers utilize special

passivity-type input/output properties of the plant and offer robust stability in the presence of

both nonparametric and parametric uncertainties1,2. The simplest controller of this type is the

constant-gain static dissipative controller which is given as follows:

u = �Gpyp �Gryr (6)

where yp and yr are the measured position/attitude and rate andGp andGr are symmetric,

nonnegative-definite gain matrices. The static dissipative controller can be used as a low-

authority stabilizing controller in a hierarchical architecture, or as the primary controller.

The objective of this section is to develop a procedure for designing the gains of a static

dissipative controller so as to provide robust performance against actuator or sensor failures

described earlier. Robust performance means that a specified level of system performance is

maintained under possible hardware failures. In this development, the time constants of the

closed-loop system poles, i.e., the damping in the closed-loop poles, is used as a measure for

performance robustness design. Here, for simplicity of presentation, we shall assume without

any loss of generality that the static dissipative controller considered would provide damping

enhancement only, i.e., the position/attitude gain matrixGp is null. It is noted that if zero-

frequency rigid modes, which are to be controlled by the dissipative controller, are present

the position/attitude gain matrix cannot be null. Note that with collocated and compatible rate
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feedback aloneC = B
T
s . Moreover, the controller is assumed to be decentralized (local feedback

only), such that the rate gain matrix is diagonal. Although, decentralization may limit the

capability of the controller, it would generally enhance its stability robustness and provide for

easier and more practical implementation. Furthermore, because the controller is diagonal due to

decentralization, diagonal input-output multiplicative uncertainties of the system are equivalent.

Therefore, only input-multiplicative uncertainties need to be considered.

The problem is now to design a static dissipative controller such that the poles of the closed-

loop system, represented by the eigenvalues of the closed-loop state matrixAs � BsGrB
T
s ,

reside in a specified region in the left half plane, i.e., to the left of a line which is parallel to

the imaginary axis, intersecting the real axis atx = ��, and is designated as the�� line, for

a defined uncertainty in the input to the plant. In other words, the system is to maintain an

� degree of stability in the presence of the uncertainty. The block diagram of the system is

shown in Figure 1.

Here,P denotes the plant transfer function defined asB
T
s (sI �As)

�1
Bs, � represents the

uncertainty in the input, andK represents the controllerGr.

Lemma 1: Let P 0 denote the transfer function of the plant with its poles shifted to the

right by �, and is defined asBT
s (sI �As � �I)

�1
Bs. Then, the�–degree robust performance

problem may be changed to a robust stabilization problem by requiring that the controllerK

stabilizes a modified plantP 0 for a defined uncertainty in the input to the plant.

Proof: Let K stabilizeP 0 with respect to the uncertainty in the input�. This means that

the poles of the modified closed-loop system are all stable (to the left of the imaginary axis)

for all allowable uncertainty, indicating that the poles of the true closed-loop system would then

be to the left of�� line (since the poles of true system are the poles of the modified system

shifted to the left of the imaginary axis by��).
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The uncertainty,�, is assumed to have a diagonal representation,� = diag(�1; �2; . . . ; �m),

to allow for independent uncertainty in each input channel. However, because of the dissipative

and decentralized nature of the controller one can use a much simpler form of uncertainty as

indicated by the following theorem.

Theorem 1:K stabilizesP 0 for all � = diag(�1; �2; . . . ; �m); j�ij � �max 8 i, iff K

stabilizesP 0 for all � = �max
�I, where �I is any diagonal matrix with elements which equal

either 1 or -1.

Necessity Proof:Obvious from the statement of theorem 1.

Sufficiency Proof:The closed-loop system equation for a distinct diagonal uncertainty block

may be written as

Acl = A0

s �Bs

2
664
1 + �1 0 . . . 0
0 1 + �2 . . . 0
...

...
. . .

...
0 0 . . . 1 + �m

3
775GrB

T

s (7)

with eachj�ij � �max andA0

s = As + �I. Rewrite Eq. (7) as follows:

Acl = bAcl �Bs

2
664
�1 0 . . . 0
0 �2 . . . 0
...

...
. . .

...
0 0 . . . �m

3
775GrB

T

s
(8)

or

Acl = bAcl �Bs
bGrB

T

s (9)

where bAcl = As � (1 � �max)BsGrB
T
s and �i = �max + �i; 8i with 0 � �i � 2�max; 8i.

The eigenvalues ofbAcl are stable because by assumptionK stabilizesP 0 for all � = �maxI,

which includes� = �maxI. Also, the gain matrixbGr is dissipative. Now, the sufficiency of

the premise can be proved by contradiction. From the statement of the theorem,K stabilizesP 0

for all � = �max
�I, or by definition, for allH � diag(�1; �2; :::�m) = �max

�
I + I

�
. However,
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assume that there exists a matrixHu = diag(�u1; �u2; :::; �um); 0 � �ui � 2�max;8 i such

that the closed-loop system is unstable. It is know from the behavior of LTI systems with

decentralized dissipative controllers that as the gain elements are increased, the poles of the

closed-loop system approach the transmission zeros from the left-hand side3–5. For example,

keeping�u2; �u3; :::; �um the same, as�1 is increased from 0 to 2�max, the closed-loop poles

move from the open-loop poles toward the transmission zeros of the system
�
A0

s;Bs1; B
T
s1

�
.

Either the closed-loop poles are stable at�1 = 0, or they are not. If at�1 = 0, all poles are

stable, then since the closed-loop system is assumed to be unstable at�1 = �u1, and the loci

approach the transmission zeros from the left side, it is obvious that the closed-loop system

would continue to be unstable as�1 approaches 2�max. This indicates that if the closed-loop

system is unstable at�1 = �u1, it will also be unstable at either�1 = 0 or �1 = 2�max, or

both �1 = 0 and �1 = 2�max. Following the same argument for the other channels, it can be

concluded that if the closed-loop system is unstable for�u2; �u3; :::; �um, it will be unstable as

well for some� in �max
�I. This violates the initial assumption thatK stabilizesP 0 for all

� = �max
�I and thus theorem 1 is proved.

Therefore, the robust performance problem is redefined in terms of a robust stability problem

under a restricted diagonal uncertainty structure in the input. The problem is to compute�max

that satisfies the conditions of theorem 1.

The approach taken for synthesizing a static dissipative controller is optimization-based.

Here, nonlinear programming is used to synthesize the elements of the rate gain matrix to

provide maximum allowance for uncertainty in the inputs. One possible optimization scenario

may be to use a repeated diagonal uncertainty structure and optimize the elements of the rate

gain matrix to maximize a bound on�max, for a prescribed degree of stability�, and subject

to the conditions of theorem 1. Now, given a plantP 0(s) and a controllerK, a bound on the
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uncertainty (repeated diagonal uncertainty structure) is established in the following.

Theorem 2:Given the robust stabilization problem, a bound on the uncertainty� = �I :

j�j � �max may be established as follows:

�max =

�
sup
!

�
��
I +KP 0

�
�1
KP 0

���1

�

�
sup
!

�
��
I +KP 0

�
�1
KP 0

���1
(10)

In this equation,� represents the spectral radius and� denotes the singular value.

Proof: given in a Corollary of Doyle6. The functional form used here for�max is the H-

infinity norm bound given in Eq. (10). The reason for using the H-infinity norm bound rather than

the supremum of spectral radius is that the former is computationally tractable (with commercial

software) whereas the latter is not. Therefore, the optimization problem is posed as follows:

Minimize the objective function

sup
!

�
��
I +KP 0

�
�1
KP 0

�
(11)

over the diagonal elements of the rate gain matrixGr, which satisfy the conditions set in theorem

1, K stabilizesP 0 for all � = �max
�I, which may be defined as

Re
�
�i
�
A0

cl

�	
< 0 8i & 8� = �max

�I (12)

as well as side constraints on the elements of the gain matrix.

The number of constraints associated with the conditions of theorem 1 grow exponentially

with the number of input uncertainties. Alternatively, one may optimize the Eq. (11) objective

function without side constraints to ensure the conditions of theorem 1, although the omission

of the side constraints may result in the conditions of theorem 1 not being satisfied by the final

design. However, experience has shown that the minimum spectral norm solution generally

provides an optimal solution which typically satisfies, or almost satisfies, the conditions of
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theorem 1. Therefore, the recommended synthesis procedure is to first find an optimal design,

then check the conditions of theorem 1. If these conditions are not met, then one has three

choices. First, accept a reduced�–degree of stability for the designed�max, which is readily

available from the check of the these conditions. Second, reduce the�max until the conditions

of theorem 1 are satisfied. Last, restart the design optimization procedure with the conditions

included as side constraints.

Dynamic Dissipative Controller

The constant-gain static dissipative controller, though attractive in its simplicity, may result in

limited performance due to its inability to provide signal shaping. To achieve better performance,

another type of controller, the dynamic dissipative controller, is considered. Like static dissipative

controllers, dynamic dissipative controllers which use collocated and compatible sensor/actuator

pairs are robust against both parametric and nonparametric model uncertainties. Unlike the static

dissipative controller, however, the dynamic dissipative controller has the advantage of having

the freedom of controller phase shaping, as well as gain shaping, thus enhancing its ability to

affect the overall system dynamics as desired.

The dynamic dissipative controller takes the following form:

_xc = Acxc +Bcy

u = �Ccxc

(13)

whereAc, Bc, andCc are the controller’s state, input influence and output influence matrices,

respectively. The vectorxc is the controller state vector,y is the vector of measurements fed

into the controller, andu is the resulting controller output vector. To ensure that the controller

is dissipative, the matrices in the controller equation must satisfy the following7:

AT

c R +RAc = �Q

Cc = BT

c
R

(14)
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where:R is positive definite;Q is positive semidefinite;Ac is strictly stable; the pair (Ac; Q
1

2 )

is controllable; and the pair (Ac; Cc) is observable.

Like the static dissipative controller, the dynamic dissipative controller is assumed to be

decentralized, i.e., having local feedback connections only. Under this assumption, the matrices

Ac, Bc andQ can be written in block diagonal form, as follows:

Ac =

2
664

Ac1 0 . . . 0

0 Ac2 . . . 0
...

...
. . .

...
0 0 . . . Acm

3
775; Bc =

2
664

Bc1 0 . . . 0

0 Bc2 . . . 0
...

...
. . .

...
0 0 . . . Bcm

3
775;

Q =

2
664

Q1 0 . . . 0

0 Q2 . . . 0
...

...
. . .

...
0 0 . . . Qm

3
775

(15)

with m being the number of sensor/actuator pairs used in the controller. In turn, for the ith

sensor/actuator pair, the individual nth order controller parameters can be written as:

Aci =

2
664

0 1 . . . 0

0 0 . . . 0
...

...
. . .

...
�a1 �a2 . . . �an

3
775; Bci =

2
664

0

0
...
1

3
775

Qi =

2
664

q1 0 . . . 0

0 q2 . . . 0
...

...
. . .

...
0 0 . . . qn

3
775

(16)

It should be noted that order of the controller for each sensor/actuator pair need not be the same.

Thea andq terms are the design parameters for the dynamic dissipative controller. Thea terms

control the locations of the controller poles and zeros, while theq terms set the gain levels.

Instead of computing the matrixCc directly, the matrixQ is obtained first. OnceQ is known,

Eq. (14) can be used to solve for the correspondingCc matrix.

Referring again to the block diagram in Figure 1, the problem now is to design a dynamic

dissipative controller,K, such that the eigenvalues of the closed-loop system, represented by
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the eigenvalues of the closed-loop system matrix

Acl =

�
As �BsCc

BcC Ac

�
(17)

reside to the left of a specified�� line in the left-half of the complex plane, for a given

uncertainty in the input to the plantP . Again, the plant transfer function is denoted by

BT
s (sI �As)

�1
Bs.

Lemma 2: The ��degree robust performance problem may be changed to a robust stabi-

lization problem by requiring that the controllerK 0, obtained by�—shifting the controllerK to

the right, stabilizes a modified plantP 0, again defined asBT
s (sI �As � �I)�1

Bs, for a defined

uncertainty in the input to the plant. The significance of the “0” notation associated with the

controller will be explained shortly.

Proof: Let K 0 represent a dynamic dissipative controller which stabilizesP 0 with respect to

the uncertainty in the input�. This means that the poles of the modified closed-loop system

are all stable (to the left of the imaginary axis) for all allowable uncertainty, indicating that the

poles of the true closed-loop system would then be to the left of�� line (since the poles of true

system are the poles of the modified system shifted to the left of the imaginary axis by��).

Once again, the uncertainty,�, is assumed to have a diagonal representation,� =

diag(�1; �2; . . . ; �m), to allow for independent uncertainty in each input channel. In turn, because

of the dissipative and decentralized nature of the controller, one can use a much simpler form

of uncertainty as indicated by the following theorem.

Theorem 3:K 0 stabilizesP 0 for all � = diag(�1; �2; . . . ; �m); j�ij � �max 8 i, iff K 0

stabilizesP 0 for all � = �max
�I, where �I is any diagonal matrix with elements which equal

either 1 or –1.

Necessity Proof:Obvious from the statement of theorem 3.

Sufficiency Proof:Let K 0 be a decentralized, dynamic dissipative controller represented by
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the system (A0

c; Bc; Cc) so thatA0T
c R+RA0

c = �Q
0 andCc = BT

c R for someQ0 � 0 andR > 0.

BecauseK 0 stabilizesP 0 for all � = �max
�I, thenK 0 will stabilize P 0 for � = ��maxI. Now,

for any distinct uncertainty block, the controller output matrix can be written as

Cc = [I + diag(�1; �2; . . . ; �m)]B
T

c
R

= [(1 � �max)I + diag(�1; �2; :::; �m)]B
T

c R

� [(1� �max)I +H]BT
c R

(18)

with �i = �max + �i; 8i and 0 � �i � 2�max. It is observed from the preceding controller

output matrix equation that the feedback loop has been decomposed into a stabilizing dissipative

feedback termC1

c = [(1 � �max)I]B
T
c R, which stabilizesP 0, along with a feedback term

C2

c = HBT
c R. Now, define the matrix� = [�1;�2; :::;�m], where�i = �iIi andIi is an identity

matrix the size ofA0

ci
, i.e., the size of� equals the size ofA0

c. SinceK 0 is decentralized,A0

c,

Bc, Cc, Q0 andR are all block diagonal, such that

A0T

c R� + �RA0

c = ��Q
0; Cc = BT

c R� (19)

Now because� � 0, �Q0 � 0 andR� > 0 (except for the trivial case of any�i = 0), therefore,

the second feedback termC2
c is dissipative as well. From here, the same proof by contradiction

arguments used to prove theorem 1, i.e., the static dissipative case, apply.

Just as in the static dissipative controller design strategy, the robust performance problem is

redefined in terms of a robust stability problem under a restricted diagonal uncertainty structure

in the input. For the dynamic dissipative case, the problem is to compute�max which satisfies

the conditions set in theorem 3.

The approach taken for synthesizing a dynamic dissipative controller is optimization-based,

just as in the synthesis of the static dissipative controller. Again, nonlinear programming is used

to synthesize the controller matrices to provide maximum allowance for uncertainty in the inputs.

Using a repeated diagonal uncertainty structure, the elements of the matricesA0

c andQ0, which
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define the dynamic dissipative controllerK 0, are used as design variables and are optimized to

maximize a bound on�max, for a prescribed degree of stability�, subject to the conditions of

theorem 3. The optimization problem is posed as follows:

Minimize the objective function

sup
!

�
��
I +K 0P 0

�
�1
K 0P 0

�
(20)

over the elements ofA0

c and Q0, more specifically, the parametersa0 and q0 [see Eq. (16)],

which meet the conditions of theorem 3,K 0 stabilizesP 0 for all � = �max
�I, which may be

defined as

Re
�
�i
�
A0

cl

�	
< 0 8i & 8� = �max

�I (21)

as well as side constraints on the elements of the matricesA0

c andQ0. In dealing with the side

constraints, one can follow the discussion presented for the static dissipative case.

Note that the above fault accommodation formulations refer to the dynamic dissipative

controllerK 0. This is not the real dynamic dissipative controller that is desired, sinceK 0 was

designed for the artificially shifted plantP 0, not the actual plantP .

Lemma 3: The real controller,K, can be computed fromK 0 by reverse shifting the

eigenvalues ofK 0 by �, i.e., the same amount that the eigenvalues of the plantP were moved

to createP 0, but in the reverse direction. That is,Ac = A0

c � �I, whereAc is the state matrix

of K andA0

c is the state matrix ofK 0. The resulting controller,K, will also be a dynamic

dissipative controller.

Proof: Let the dynamic dissipative controller,K 0, be defined by the following equations:

_xc = A0

cxc + Bcy andu = Ccxc. SinceK 0 is a dynamic dissipative controller, the following

conditions (positive realness conditions) must be true:A0T
c R + RA0

c = �Q0; R > 0; and
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Q0 � 0. By adding�2�R to both sides, the above Lyapunov equation can be rewritten as

A0T
c R +RA0

c � 2�R = �(Q0 + 2�R), or as(A0

c � �I)
T
R +R(A0

c � �I) = �(Q0 + 2�R), and

finally, asAT
c R + RAc = �Q, with Ac = A0

c � �I andQ = Q0 + 2�R. Since� > 0, and

2�R > 0, thenQ > 0. Therefore, (Ac; Bc;Cc) also satisfies the positive realness conditions and

therefore the real controller,K, will also be a dynamic dissipative controller. Note that neither

Bc nor Cc change during the reverse shift operation. The reverse shift operation is unnecessary

for the static dissipative controller, since that controller has no dynamics associated with it.

MU Controller

The robust performance of interest in this study is to guarantee that real components of all

closed-loop eigenvalues remain on the left of�� under predefined uncertainties.

Consider two LTI feedback systems,G := (As; Bs; Cs; 0), K := (a; b; c; d), andG0 :=

(As + �I;Bs; Cs; 0), K 0 := (a+ �I; b; c; d). From the closed-loop system matrices, it is clear

that the eigenvalues� of the closed loop system(G;K), are related to the eigenvalues�0 of

the closed loop system(G0;K 0), by

� = �0
� �I (22)

Let � 2 B� whereB� denotes the set of bounded and structured uncertainty. LetP 0

22
and

K 0 be �-shifted systems corresponding toP22 andK. Define the augmented plants for linear

fractional transformations (LFTs) partitioned as

P �

�
P11 P12
P21 P22

�
; P 0

�

�
P11 P12
P21 P 0

22

�
(23)

and the lower LFT

Fl

�
P 0;K 0

�
= P 0

11 + P 0

12K
0
�
I � P 0

22K
0
�
�1
P 0

21

= P11 + P12K
0
�
I � P 0

22K
0
�
�1
P21

(24)
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The following summarizes the�-degree of stability robustness with respect to structured

uncertainty.

Theorem 4:The eigenvalues of the set of perturbed closed loop system(P;K;�), 8� 2 B�

remains on the left of�� iff sup! �(Fl(P
0;K 0)11) � 1, where the subscript 11 denotes the

upper-left partition of (), which in this case corresponds to the uncertainty.

Proof: From Doyle6, the closed loop system(P 0;K 0;�) will be robustly stable8� 2 B� iff

sup! �(Fl(P
0;K 0)11) � 1. Then from Eq. (22),(P;K;�) will be robustly stable with degree�.

The design implication is clear from the above theorem 4. The performance index,

sup! �(Fl(P
0;K 0)11) � 1, can be minimized with respect to the given uncertainty structure,

to attain or get close to� degree of robust stability. The actual minimization can be carried

out using D-K iteration via�-tools8.

The design strategy is summarized in the following steps:

1. First � shift P22 in Eq. (23) to obtainP 0

22

2. Next, use� synthesis to design a controllerK 0 to minimize thesup! �(Fl(P
0;K 0)11) � 1,

which will maximize the uncertainty allowed.

3. Last, reverse� shift K 0 to obtain the implementing controllerK.

Numerical Examples

To demonstrate the feasibility of the proposed control synthesis techniques, they were applied

to control design of the Phase-II CSI Evolutionary Model (CEM), a testbed at NASA Langley

for ground-based experimental studies of multi-payload space platforms. The structure, shown

in Fig. 2, consists of a 620–in long aluminum main truss with several appendages. Three

two–axis gimbals, each implemented with a laser source and a high-precision scoring system,

are attached to the main bus to simulate science payloads on a space platform. Eight bi-directional

thrusters are used for platform control and/or disturbance generation, whereas eight collocated
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accelerometers provide acceleration measurements for feedback control. These acceleration

signals are integrated with the aid of wash-out filters to provide collocated velocity measurements.

A 20th-order state-space model of the structure was used in the analysis.

Static Dissipative Controller

A static dissipative controller was synthesized using the nonlinear programming approach

described previously. Using the eight diagonal elements of the rate gain matrix as design

variables, and the desired degree of stability� taken as 0.30, the elements of the rate gain

matrix are optimized to maximize the fault tolerance of the closed-loop system. Here, the

optimization problem presented for the static dissipative controller case used Eq. (11), i.e.,

the optimal gains were computed by minimizing the H-infinity norm bound of the closed-loop

system, as formed by the nominal�–shifted plantP 0 and the designed controllerK, in order to

maximize�max. Constraints were placed to ensure that the set of eigenvalues of the closed-loop

system were stable. However, closed-loop stability checks based upon theorem 1 were not done

in the controller synthesis procedure. The Automated Design Synthesis (ADS) software9 was

used to carry out the optimization. The interior penalty function method of ADS was used to

solve the nonlinear programming problem. The initial values of the gain elements were set at

1.0, with the lower bound and upper bound values set at 0.001 and 1000.0, respectively. The

initial value of the objective function (H-infinity norm of the closed-loop transfer function at the

input) was 5.51. The optimization decreased the objective function to a value of 2.97 (a 46%

reduction), thereby increasing the upper bound constraints on the uncertainty norm by almost

a factor of two. The true measure of uncertainty allowance used here, however, is inversely

proportional to the maximum value of the spectral radius over the frequency spectrum (see Eq.

10), which for the example optimal design turned out to be 2.71. This provides for an input

multiplicative uncertainty bound of 0.36 (equal to 1/2.71). It should be noted that the optimal
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controller provides robust performance, in the form of closed-loop time constants of less than 33

seconds, for diagonal multiplicative uncertainty in the input of less than or equal 36 percent. The

optimal rate gain matrix wasGr = diag(0:86; 1:93; 1:74; 5:44; 2:99; 1:25; 0:46; 0:77). To further

demonstrate these results, a 1000–run Monte Carlo simulation was performed wherein the signal

in each input channel was randomly and independently modified by as much as±36%, using

MATLAB’s random number generating function with normal distribution. Figure 3 illustrates the

locations of two poles of the closed-loop system closest to the imaginary axis, as computed from

the Monte Carlo simulation. As expected, the loci of these poles stayed to the left of –0.3 line.

To evaluate the effect of the� level on the uncertainty that can be tolerated, several

static dissipative controllers were synthesized for various� were levels using the nonlinear

programming technique described earlier. Figure 4 illustrates the result of this trade study. Here,

it is observed that, as expected, performance and robustness to uncertainty follow an inverse

relationship. The higher the performance levels the smaller the uncertainties tolerated, and the

smaller the performance levels the larger the uncertainties allowed. The level of performance

is bounded on the right by the location of the finite zeros of the flexible plant, since as the

gain matrix is increased a number of closed-loop poles (equal to the number of finite zeros

of the system) approach the finite zeros. On the left, the trade-off curve continues to rise as

the performance level� decreases. If the performance level� is the only driving factor in the

controller design, then as the� level drops below the performance level of the open-loop system,

the uncertainty level that can be tolerated goes beyond 1.0 (allowing 100% or more variation in

the inputs), and the control gain would approach zero (since no control is necessary to obtain

desired performance).

To verify these results with respect to theorem 1, the maximum spectral radius values

for the closed-loop systems formed with the above optimal static dissipative controllers were
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computed to determine the less conservative, maximum input uncertainty levels (see Table

1). See Table 2 to compare the maximum input certainty levels for these same controllers

as computed from the H-infinity norm bound. Using the maximum input uncertainty levels

Table 1. Maximum spectral radius values for the static dissipative controllers.

Degree of Stability� Max. Spectral Radius �max

0.05 1.0357 0.9655

0.1 1.1539 0.8666

0.2 1.6025 0.6240

0.3 2.7116 0.3687

0.4 15.0675 0.0664

from Table 1, the stability of the closed-loop system, formed with each controller, was checked

by computingRe
�
�
�
As �Bs

�
I + �max

�I
�
GrB

T
s

�	
, for all possible permutations of�I, i.e., the

stability conditions of theorem 1. The condition for degree of stability set in theorem 1 was

considered violated if any eigenvalue lay to the right of the specified�� line for the given

controller. This is equivalent to the condition set in theorem 1, where the eigenvalues of the

closed-loop system formed by the�–shifted plant,A0

s, and controller must lie to the left of

the j! axis. A violation would indicate that the particular controller could not guarantee the

desired closed-loop� degree of stability for all possible distinct input uncertainties up to the

specified�max level. For a controller withm inputs, there would be2m � 2 permutations of

the matrix �I, excluding the permutations�I = I and �I = �I. In the above example, with 8

inputs, 254 permutations of�I, and thus 254 sets of closed-loop eigenvalues, were computed

for each static dissipative controller. The results of these computations show that for those

controllers corresponding to� ranging from 0.05 to 0.3, the closed-loop eigenvalues lay to the

left of the�� line for all permutations of�I, thus satisfying the requirement set in theorem 1.
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This supports the effectiveness of the optimization problem posed for the synthesis of a static

dissipative controller without including the side constraints of theorem 1. However, for the� =

0.4 controller, there were several permutations of�I where some of the closed-loop eigenvalues

lay to the right of the –0.4 line; thus, that specific static dissipative controller would not be

able to guarantee a closed-loop system degree of stability of 0.4 for all possible distinct input

uncertainties of up to 0.0664. Further computations revealed that the maximum allowable input

uncertainty level, to guarantee an� = 0.4 degree of stability, would be 0.0663. Conversely, if

a maximum uncertainty allowance of 0.0664 was truly desired, than the achievable guaranteed

degree of stability would be a slightly lower value of 0.39998. Again, this shows the effectiveness

of this synthesis procedure and how well the spectral radius bound in Eq. (10) approximates the

allowed uncertainty tolerance. If the design does not satisfy the conditions of theorem 1, one

can easily determine what performance level it can provide.

Incorporating both the maximum spectral radius method of calculating�max (instead of

the H-infinity norm bound method) and permutation calculations would make the controller

design synthesis procedure either too computationally intensive or intractable, particularly if large

numbers of inputs and/or system states were involved. The current design synthesis procedure

gives good results, which can be checked and adjusted as needed off line.

Dynamic Dissipative Controller

A dynamic dissipative controller was synthesized, using the same nonlinear programming

approach used to create the static dissipative controller. For the dynamic dissipative case, the

optimization problem involved the minimizing of Eq. (20). Like the static dissipative controller

design example, rate information was used as the feedback signals. For the desired closed-loop

� degree of stability of 0.3, thea and q parameters, were optimized to maximize the input

uncertainty allowance to the plant. Again, the ADS software package was used to perform
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the optimization. For each of the eight sensor/actuator pairs, a second-order controller was

synthesized, making the total order of the complete dynamic dissipative controller equal to 16.

As initial conditions, the controller for each sensor/actuator pair was set as:

Gri

100(s+ 50)

(s+ 100)(s+ 50)
(25)

whereGri was the optimal gain associated with the ith sensor/actuator pair of the static dissipative

controller described in the previous numerical example. The initial pole and zero locations were

selected to make the dynamic dissipative controller behave like the constant-gain static dissipative

controller in the frequency bandwidth of the plant model (34 radians/second). The ADS program

was free to adjust these pole and zero locations, as well as the gains, during the optimization.

The optimization decreased the objective function to 2.96, which was slightly lower than the

static dissipative controller. The uncertainty allowance value, as computed by the maximum of

the spectral radius over the frequency spectrum of interest, was 2.70, which corresponds to a

multiplicative uncertainty bound of 0.37. The pole and zero locations of the optimal dynamic

dissipative controller changed very slightly from those of the initial values. The largest change

occurred in the controller portion associated with the second sensor/actuator pair: the optimal

pole locations were at —50.019 and —99.981; the optimal zero location was at —49.973; and

the optimal DC gain was 1.931, where the initial, i.e., the optimal gain for the 2nd sensor/actuator

pair of the static dissipative controller DC gain was 1.933.

To verify these results, a 1000–run Monte Carlo simulation was performed wherein the signal

in each input channel was randomly and independently modified by as much as±37 percent.

Figure 5 illustrates the locations of two poles of the closed-loop system closest to the imaginary

axis for the simulation. As expected, the loci of these poles stayed to the left of –0.3 line.

To evaluate the effect of the� level on the uncertainty that can be tolerated, several

dynamic dissipative controllers, again using the static dissipative controller optimal gains as initial
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conditions, were synthesized for various� levels using the nonlinear programming technique

described earlier. Figure 6 shows the result of this trade study. Here, as was observed in the

static dissipative controller designs, performance and robustness to uncertainty follow an inverse

relationship. The higher the performance levels the smaller the uncertainties tolerated, and the

smaller the performance levels the larger the uncertainties allowed. When comparing Figures 4

and 6, it can be observed that the dynamic dissipative controllers were able to achieve, if only

marginally, better performance than the static dissipative controllers. This was attributed to the

increased design freedom of controller zero and pole placements to better affect the systems

overall dynamics. Other dynamic dissipative controller designs, with higher required degree of

stability�, achieved more noticeable improvements over the static dissipative controller. Table 2

lists the uncertainty allowance values, as computed from the H-infinity norm bound, for several

degrees of stability�, taken from the respective static and dynamic dissipative controller trade

studies.

Table 2. Uncertainty Allowance Trade Study

Degree of Stability Static Dissipative Controller Dynamic Dissipative Controller

� Uncertainty Allowance Unceratinty Allowance

0.05 0.961 0.960

0.1 0.857 0.858

0.2 0.607 0.611

0.3 0.336 0.337

0.4 0.060 0.087

These dynamic dissipative controllers were tested with respect to the stability requirement

set in theorem 3. As in the case with the static dissipative controllers in the previous section,

the maximum spectral radii of the closed-loop systems formed by these dynamic dissipative
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controllers were computed. These values, along with their corresponding maximum input

uncertainty allowances,�max, are listed in Table 3. Using the maximum input uncertainty

Table 3. Maximum spectral radius values for the dynamic dissipative controllers.

Degree of Stability� Max. Spectral Radius �max

0.05 1.0376 0.9638

0.1 1.1525 0.8667

0.2 1.5980 0.6258

0.3 2.7027 0.3700

0.4 10.4592 0.0956

levels from Table 3, the degree of stability of the closed-loop system, formed with each

controller, was checked by computing the real parts of the eigenvalues of the closed-loop

system
�
As �Bs

�
I + �max

�I
�
Cc; BcB

T
s Ac

�
, for all possible permutations of�I, where

(Ac; Bc; Cc) are the dynamic dissipative controller matrices. If any eigenvalue lay to the right

of the specified�� line for the controller in question, then the condition given in theorem 3 was

considered violated, i.e., that particular controller could not guarantee the desired closed-loop

� degree of stability for all possible distinct input uncertainties up to the specified�max level.

Again, the above is equivalent to the requirement given in theorem 3, where the eigenvalues

of the closed-loop system
�
A0

s �Bs

�
I + �max

�I
�
Cc; BcB

T
s A0

c

�
, i.e., with the shifted plant

and controller, must lie to the left of thej! axis. For each controller, 254 sets of closed-loop

eigenvalues were computed. The results of these computations show that for those controllers

corresponding to� ranging from 0.05 to 0.3, the closed-loop system eigenvalues lay to the left of

the�� lines for all permutations of�I, thus satisfying the requirement set in theorem 3. However,

for the� = 0.4 controller, there were several permutations of�I where some of the eigenvalues

lay to the right of the –0.4 line, thus that specific static dissipative controller would not have
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been able to guarantee a closed-loop system degree of stability of 0.4 for all possible distinct

input uncertainties of up to 0.0956. Further computations revealed that the maximum allowable

input uncertainty level, to guarantee an� = 0.4 degree of stability, would be 0.091, which

corresponds to a maximum spectral radius of 10.9890. Conversely, if a maximum allowable

uncertainty allowance of 0.0956 was truly desired, than the achievable guaranteed degree of

stability would be 0.3977.

Similar to the static dissipative controller synthesis procedure, the dynamic dissipative

controller synthesis procedure shows its effectiveness for providing fault accommodation. If the

design does not satisfy the conditions of theorem 3, one can easily determine what performance

level it can provide.

� Controller

Actuator failures for any combination or number are modeled as independent scalar mul-

tiplicative uncertainties in all channels at the input to the CEM structure. This results in a

diagonal multiplicative uncertainty at the input. Although not strictly necessary for the sole

purpose of optimizing stability robustness, weighted external inputs and outputs were introduced

to formulate the problem in terms of a performance robustness problem for a general LFT. For

this study, very small values for the external input/output weights were chosen to emphasize

only the � of the robust stability block. TheD � K iteration method was used to design�

controllers for all cases using only constant scales. Figure 7 shows the� shifted closed loop

system used for controller design. The magnitude of the diagonal uncertainties,�1,...,�8, were

assumed to be bounded by unity.

Figure 8 shows the trade-off between the desired degree of stability,�, and the corresponding

maximum size of the uncertainty tolerated. For given� value, the uncertainty weight was

increased until thesup! �[Fl(P
0;K 0)11] approached unity. As in the dissipative case, the general
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trend is that as� increases linearly,� decreases exponentially. Although not shown in the Fig. 8,

an arbitrary level of uncertainty can be accommodated at� = 0. This corresponds to the special

condition where the given structural plant is stable and the controller basically opens the loop

to guarantee robust stability. Note that since the� shift does not change the plant eigenvectors,

the controllability and observability of the� shifted nominal structural plant will not change.

Although the inputs and outputs of the structure were physically collocated, the input and

output responses are not diagonally dominant. Therefore, it is not surprising that the controllers

obtained had large, but not dominant, diagonal components. In addition, the diagonal nature

of the uncertainty did not significantly increase robustness over the corresponding unstructured

case. It is also noted that� controllers are generally not positive-real; hence these controllers,

although they are robust to particular uncertainty, are not automatically robust to parametric

uncertainty and spillover problem. However, additional uncertainty models can be introduced

to robustify the� controller. Simulation was also done to verify� degree of stability for the

set of perturbed systems.

Concluding Remarks

This paper presents the development of novel methodologies that allow direct synthesis

of controllers that guarantee robust stability with a prescribed degree. This is useful for fault

accommodation since robust stability and performance is of primary concern. For soft failures

in the form of large degradation in the actuator/sensor signals, both dissipative and H-infinity

based controllers can significantly mitigate significant (up to 20 or 30%) errors and still guarantee

various degrees of stability robustness. The�-based compensator consistently provided larger

uncertainty tolerance (for a desired degree of stability) than the static dissipative controller. The

dynamic dissipative controller was second best in terms of providing robust performance in the

presence of actuator failures, particularly for large desired degrees of stability. Nonetheless,
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the constant diagonal nature of collocated velocity feedback provides good performance when

compared to the much more complicated� or dynamic dissipative compensators. The simplicity

in the static dissipative controller and its guaranteed stability under hard failures with mild

assumptions is certainly attractive.
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Figure 1 Block diagram of the feedback system with multiplicative uncertainty in the input.
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Figure 2 Schematic of the Phase-II CSI Evolutionary Model.
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Figure 3 Loci of the closed-loop poles closest to the imaginary axis, static dissipative controller.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α degree of stability

U
nc

er
ta

in
ty

 a
llo

w
an

ce

Figure 4 Trade-off between performance and uncertainty, static dissipative controller.

28



−0.5 −0.45 −0.4 −0.35 −0.3 −0.25
−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y

Figure 5 Loci of the closed-loop poles closest to imaginary axis, dynamic dissipative controller.
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Figure 6 Trade-off between performance and uncertainty, dynamic dissipative controller.
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Figure 7 Block diagram for the robust stabilization problem.
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Figure 8 Trade-off between performance and uncertainty,

�–synthesis, static and dynamic dissipative cases.
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